Research Groups
- Jan Brugués
- Dye / Eaton
- Anne Grapin-Botton
- Stephan Grill
- Pierre Haas
- Michael Hiller
- Alf Honigmann
- Meritxell Huch
- Wieland Huttner
- Anthony Hyman
- Florian Jug
- Elisabeth Knust
- Moritz Kreysing
- Carl Modes
- Gene Myers
- André Nadler
- Gaia Pigino
- Jonathan Rodenfels
- Ivo Sbalzarini
- Andrej Shevchenko
- Jacqueline Tabler
- Dora Tang
- Pavel Tomancak
- Agnes Toth-Petroczy
- Nadine Vastenhouw
- Christoph Zechner
- Marino Zerial
ANDREJ SHEVCHENKO
GROUP
- Research Focus
- Projects
- Absolute quantification of proteins from metabolic pathways
- Accurate quantification of PUFA lipids by high-resolution FT MS/MS
- Clinical lipidomics
- Drosophila melanogaster sterolome: A primer to elucidate temperature acclimation
- Identification of CD1d-associated Lipid Antigens by Shotgun Lipidomics
- Intensity-independent noise filtering in shotgun FT MS and FT MS/MS spectra
- Lipidomics of Laser Capture Microdissected Tissues
- Lipidomics of liver metabolic disorders
- LipidXplorer
- Metabolomics in C. elegans by LC-MS
- Molecular composition and turnover of inner leaflet lipids in Receptor Tyrosine Kinase (RTK) signalling
- Monitoring Membrane Lipidome Turnover by Metabolic15N Labeling and Shotgun Ultra-High-Resolution Orbitrap FT-MS
- MS Western: The Method for Targeted Multiplexed Absolute Quantification of Proteins by GeLC-MS/MS
- Proteomics of Diatoms: discovery of polyamine modifications in biosilica-associated proteins
- Group Leader
- Group Members
- Doctoral Theses
- Publications
- Instrumentation
- MS Facility
- MS community
Biological Mass Spectrometry
Every molecule has a mass, which could be measured by mass spectrometry, when the molecule is ionized. Complex molecules could be dissociated into structure-specific fragments whose masses could reveal their intact molecular structures.
By measuring the intact masses and or characteristic fragments, individual molecules could be recognized and quantified in very crude mixtures with other molecules.
Biological mass spectrometry supports a sound chemical rationale regarding the composition, organization and dynamics of complex biological systems. It has spearheaded the development of a branch of post-genomic sciences (called omics sciences), aiming at the quantitative characterization of complete constellation of proteins (proteomics), lipids (lipidomics) or metabolites (metabolomics) in cells, tissues as well as entire organisms.
We are focused on developing analytical methods and software for the organism-scale identification and quantification of known and un-discovered novel protein and lipid molecules, which gives us a competitive edge in multi-omics projects. We are particularly interested in the absolute (molar) quantification of proteins and lipids such that we could learn their stoichiometry and how they are organized in protein-lipid assemblies in biological membranes, what their dynamics are and how both protein and lipid component interplay during organism development including adaptation to diet and environment. Our work entails important translational components since all these questions are immediately relevant to a broad palette of metabolic disorders.
Taken together, the three pillars of our work are lipidomics, proteomics and the application of omics methods in biology and molecular medicine.
Methodological and technical highlights:
- Absolute (molar) quantification of proteins
- Label-free quantitative proteomics
- Proteomics in organisms with unknown genomes
- Shotgun lipidomics on high-resolution mass spectrometers
- Systematic screening for novel lipids by shotgun and LC-MS/MS
- Software for mass spectra processing, lipidomics and proteomics