Die Nachahmung der Expression eines einzelnen Schlüsselgens so wie im Menschen genügt, um die Neubildung von Nervenzellen im sich entwickelnden…

Mehr

Wie über die Struktur von RNA-Proteinkomplexen in der Zelle entschieden wird

Mehr

Wie eine Amöbe klumpende Proteine unter Kontrolle hat

Mehr

Hanfpflanzen besitzen Substanzen, die ein bei Tumoren aktives Protein blockieren können

Mehr

Auf den Spuren der Evolution

Mehr

Gehirn-Evolution bei Säugetieren

Mehr

Kalorien spielen keine Rolle bei der Regulierung von Insulin, sondern Lipide

Mehr

Max-Planck-Forscher entdecken Stoffe, die den Abbau von Nervenzellen bremsen und sogar verhindern können

Mehr

Wie Hirn-Stammzellen die Zellteilungsmaschine regulieren

Mehr

Schlagende Zebrafisch-Herzen in 3D

Mehr

Control of cellular noise via subcellular compartmentalization.

In this project, we study the role of biomolecular condensates to control intracellular noise. We have recently provided a first proof-of-principle of this idea, showing that protein concentration noise can be strongly reduced when the protein partitions into condensates. Based on these findings we are now exploring the generality of this concept in the context of cellular information processing and feedback control. To this end, we merge statistical physics with control theory to understand the statistical constraints of chemical pathways in condensed, non-equilibrium environments. We complement our theoretical work with experiment in close collaboration with the Hyman lab.

Dynamics of chromatin looping and its role in transcriptional regulation.

Loop extrusion has been proposed as a mechanism to compartmentalize chromatin into topologically associating domains (TADs), thereby facilitating interactions between promoters and enhancers. In collaboration with the Hansen and Mirny labs at MIT, we use statistical modelling and super-resolution live-cell imaging to understand the dynamics of chromatin looping and its role in transcription regulation. We have recently developed a rigorous statistical method to infer loop contact frequencies and lifetimes from noisy time-series data. Our long-term goal is to use these approaches to establish a quantitative link between the dynamics of chromatin looping and transcription.