DRESDEN-concept Genome Center wird DFG-Kompetenzzentrum für Hochdurchsatzsequenzierung

Mehr

Eine umfassende Ressource enthüllt die Dynamik von 70 DNA-Reparaturproteinen – eine leistungsstarke Plattform für die Grundlagenforschung und die…

Mehr

Ein revolutionärer Ansatz zur Steuerung embryonaler Entwicklung 

Mehr

Bisher größtes Genom legt Grundlage für Regenerationsforschung

Mehr

Erste vollständige Entschlüsselung des Plattwurm-Genoms als Schatzkammer der Funktion und Evolution von Genen

Mehr

Stress-Sensoren erhöhen Überleben von Hefe-Zellen

Mehr

Ehrung für herausragende wissenschaftliche Arbeiten auf dem Gebiet der Zellbiologie

Mehr

Highlight: Mini-Workshop des Google-Konzerns am 24. August 2017

Mehr

Forscher aus unterschiedlichen Disziplinen untersuchen gemeinsam die Abläufe in Zellen

Mehr

Pläne für neues Forschungszentrum

Mehr

Control of cellular noise via subcellular compartmentalization.

In this project, we study the role of biomolecular condensates to control intracellular noise. We have recently provided a first proof-of-principle of this idea, showing that protein concentration noise can be strongly reduced when the protein partitions into condensates. Based on these findings we are now exploring the generality of this concept in the context of cellular information processing and feedback control. To this end, we merge statistical physics with control theory to understand the statistical constraints of chemical pathways in condensed, non-equilibrium environments. We complement our theoretical work with experiment in close collaboration with the Hyman lab.

Dynamics of chromatin looping and its role in transcriptional regulation.

Loop extrusion has been proposed as a mechanism to compartmentalize chromatin into topologically associating domains (TADs), thereby facilitating interactions between promoters and enhancers. In collaboration with the Hansen and Mirny labs at MIT, we use statistical modelling and super-resolution live-cell imaging to understand the dynamics of chromatin looping and its role in transcription regulation. We have recently developed a rigorous statistical method to infer loop contact frequencies and lifetimes from noisy time-series data. Our long-term goal is to use these approaches to establish a quantitative link between the dynamics of chromatin looping and transcription.