Die kompakte DNA-Organisation verbessert die Sehkraft nachtaktiver Säugetiere.

Mehr

Dresden researchers engineer a minimal synthetic cellular system to study basic cell function

Mehr

Wirkungsmechanismus des menschenspezifischen Gens für Hirngröße entschlüsselt

Mehr

Dresdner Forscher entwickeln geometrische und funktionelle Lebermodelle für optimierte Diagnose von nichtalkoholischer Fettlebererkrankung

Mehr

Dresdner Forscher entdecken die Selbstorganisation von Zelladhäsionsverbindung, der Klebstoff zwischen den Zellen.

Mehr

Verloren gegangene Gene bei Walen und Delfinen halfen bei Anpassung an Wasserwelt.

Mehr

MPI-CBG und TU Dresden Wissenschaftlerin tot aufgefunden

Mehr

Erstes und neues naturgetreues 3D-Modell der Leberläppchen seit 1949

Mehr

Das YAP-Protein des Hippo-Signalwegs ist ein notwendiger und ausreichender Faktor für die Expansion des Neocortex.

Mehr

Neu entdeckte physikalische Kraft trägt zur gesunden Entwicklung des Rotbraunen Reismehlkäfers bei.

Mehr

Control of cellular noise via subcellular compartmentalization.

In this project, we study the role of biomolecular condensates to control intracellular noise. We have recently provided a first proof-of-principle of this idea, showing that protein concentration noise can be strongly reduced when the protein partitions into condensates. Based on these findings we are now exploring the generality of this concept in the context of cellular information processing and feedback control. To this end, we merge statistical physics with control theory to understand the statistical constraints of chemical pathways in condensed, non-equilibrium environments. We complement our theoretical work with experiment in close collaboration with the Hyman lab.

Dynamics of chromatin looping and its role in transcriptional regulation.

Loop extrusion has been proposed as a mechanism to compartmentalize chromatin into topologically associating domains (TADs), thereby facilitating interactions between promoters and enhancers. In collaboration with the Hansen and Mirny labs at MIT, we use statistical modelling and super-resolution live-cell imaging to understand the dynamics of chromatin looping and its role in transcription regulation. We have recently developed a rigorous statistical method to infer loop contact frequencies and lifetimes from noisy time-series data. Our long-term goal is to use these approaches to establish a quantitative link between the dynamics of chromatin looping and transcription.