Zellen wackeln sich in den Takt

Wie Grünalgen ihre Schwimmarme synchronisieren

Die Grünalge ist ein Mikro-Brustschwimmer. Mechanische Kräfte halten ihre beiden Schwimmarme im Takt: Deren Schwimmzüge verlangsamen oder beschleunigen sich, je nachdem wie die Zelle beim Schwimmen wackelt. Quelle: MPI-CBG, Dresden

Der Schlag von Geißeln ist ein Grundprinzip für Bewegungen im Zellkosmos. Wie aber mehrere der kleinen Zellschwänze synchronisiert werden, war bisher ungewiss. Dresdner Max-Planck-Forscher haben nun zeigen können, wie die Grünalge Chlamydomonas ihre beiden Schwimmarme durch eine raffinierte Wackelbewegung im Gleichtakt hält. Dazu erarbeiteten die Wissenschaftler erst ein theoretisches Modell, dass sie dann in Experimenten mit dem Mikro-Brustschwimmer belegen konnten: Geraten die beiden Schwimmarme einmal außer Takt, beginnt die Zelle zu wackeln. Dadurch verlangsamen oder beschleunigen sich wiederum deren Schwimmzüge. Der daraus resultierende Synchronisations-Mechanismus beruht allein auf der Kopplung zwischen den beiden Bewegungen, der des Körpers und der der Geißeln; spezielle Sensoren oder chemische Signale sind nicht nötig. (PNAS, 21. Oktober 2013)

„Eine Alge ist ein wunderbares Modell für unsere Fragestellung, denn sie zeigt uns mit ihren zwei Schwimmarmen recht übersichtlich, wie mehrere Geißeln allein durch mechanische Kräfte synchronisiert werden“, sagt Benjamin Friedrich, der die Arbeiten geleitet hat. Wie also Zehntausende von molekularen Motoren zusammenarbeiten, um Geißeln in Bewegung und in den richtigen Takt zu bringen, ist höchst interessant, da dies etlichen Vorgängen zu Grunde liegt: „Die kleinen Zellfortsätze sind ein Bestseller der Natur, sie treiben Spermien an, bilden große Transportteppiche im Eileiter oder den Atemwegen“, erklärt Friedrich.

Synchronschwimmen im Labor

Die gerade mal 10 Mikrometer großen Zellfortsätze schlagen ungefähr 30 mal pro Sekunde. In einer flachen Beobachtungskammer ließen die Forscher die einzellige Grünalge Chlamydomonas vor ihren Mikroskoplinsen herumschwimmen – und werteten dann die Schwimm- und Biegebewegungen in den Mikroskopiefilmen aus: „Aus diesen Filmen können wir alle mechanischen Kräfte präzise rekonstruieren.“, so Friedrich. Gezeigt hat sich: Wird die Last größer, schlägt die Geißel langsamer, genau wie der Motor eines Autos, welches einen Anstieg bewältigen muß. Die Kraft und Schnelligkeit des Schlages sind also an die Bewegung des Körpers gekoppelt. Diese Last-Abängigkeit synchronisiert die Schläge der beiden Geißeln, ohne dass es spezieller Sensoren oder chemischer Signale bedarf.

Die Arbeiten führten Forscher in einer Kollaboration aus zwei Dresdner Max-Planck-Instituten durch, dem für molekulare Zellbiologie und Genetik (MPI-CBG) und dem für Physik komplexer Systeme (MPI-PKS). Die Ergebnisse veröffentlichten sie in der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Originalveröffentlichung

Veikko F. Geyer, Frank Jülicher, Jonathon Howard, Benjamin M. Friedrich:
Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
PNAS, 21. Oktober 2013