Kontakte zwischen den Zellen steuern die Leberregeneration

Forscher aus Dresden und Cambridge entdecken einen Zelltyp, der die Leberregeneration durch Berührung steuert.

Ein Schnitt durch Lebergewebe, der zeigt, wie Mesenchymzellen (in rosa) die Leberduktalzellen (auch bekannt als Cholangiozyten, in gelb und blau) während der letzten Phase der duktal gesteuerten Leberregeneration berühren und umhüllen. Alle Zellkerne sind in Blau sichtbar. Die Mesenchymzellen mit ihren langen Zellfortsätzen erinnerten die Autoren der Studie an Tintenfische. Copyright: Anna Dowbaj, Meritxell Huch Gruppe, MPI-CBG

Seit Aristoteles ist bekannt, dass die menschliche Leber die größte Regenerationsfähigkeit aller Organe des Körpers besitzt und selbst nach einer Amputation von 70 % nachwachsen kann. Dadurch sind Transplantationen durch Leberspender möglich. Obwohl sich die Leber nach einer Verletzung vollständig regeneriert, sind die Mechanismen, die regeln, wie der Regenerationsprozess aktiviert oder gestoppt wird noch unbekannt. Forscherinnen und Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden, des Gurdon-Instituts (Cambridge, Vereinigtes Königreich) und der Universität Cambridge, Fachbereich Biochemie, haben nun herausgefunden, dass ein regulierender Zelltyp – mesenchymale Zellen – die Leberregeneration aktivieren oder stoppen kann. Die mesenchymalen Zellen tun dies über die Anzahl der Kontakte, die sie mit den regenerierenden Zellen (Epithelzellen) herstellen. Diese Studie deutet darauf hin, dass Fehler im Regenerationsprozess, die zu Krebs oder chronischen Lebererkrankungen führen können, durch eine falsche Anzahl von Kontakten zwischen beiden Zelltypen verursacht werden. Die Studie ist in der Fachzeitschrift Cell Stem Cell veröffentlicht worden.

Die molekularen Mechanismen, durch die ausgewachsene Leberzellen die Regeneration auslösen, sind noch weitgehend unbekannt. Etwa 29 Millionen Menschen in Europa leiden an einer chronischen Lebererkrankung wie Zirrhose oder Leberkrebs. Sie sind eine der Hauptursachen für Erkrankungen und Sterblichkeit, wobei Lebererkrankungen weltweit für etwa zwei Millionen Todesfälle pro Jahr mit verantwortlich sind. Derzeit gibt es keine Heilung und Lebertransplantationen sind die einzige Behandlung bei Leberversagen. Wissenschaftler erforschen daher neue Möglichkeiten, die Regenerationsfähigkeit der Leber als Alternative zur Wiederherstellung ihrer Funktion zu nutzen. 

Entwicklung von Mini-Lebern
Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden erforschen gemeinsam mit Kolleginnen und Kollegen des Gurdon-Instituts der Universität Cambridge die biologischen Grundlagen der Leberregeneration bei Erwachsenen. Im Jahr 2013 entwickelte Meritxell Huch zusammen mit Hans Clevers die ersten Leberorganoide ­– Miniatur-Lebergewebe, die aus Leberzellen der Maus in einer Petrischale im Labor entstanden. Den Forschern gelang es sogar, das Organoid in eine Maus zu transplantieren, wo es Leberfunktionen übernehmen konnte. Im Jahr 2015 übertrugen sie diese Leberorganoid-Technologie erfolgreich auf die Kultivierung einer menschlichen Leber in einer Petrischale auf der Grundlage von menschlichen Leberproben. 2017 entwickelten sie ein ähnliches System auf der Grundlage von menschlichem Leberkrebs. Die Forschungsgruppe von Meritxell Huch war bis 2019 am Gurdon Institute der Universität Cambridge tätig und zog dann an das MPI-CBG um. 

Eine überraschende, aufregende Beobachtung
Die beiden wichtigsten funktionellen Zellen der erwachsenen Leber sind die Hepatozyten, die viele Funktionen in der Leber übernehmen, und die duktalen Zellen, die das Netz winziger Gänge bilden, durch die die Galle in den Darm geleitet wird. Diese arbeiten mit anderen unterstützenden Zellen, wie den Blutgefäßen oder den mesenchymalen Zellen zusammen. Für den Aufbau von Leberorganoiden verwendeten die Forscher anfangs nur duktale Zellen des Gallengangs. Um dieses Modell zu verbessern und es der echten Leber ähnlicher zu machen, planten die Doktorandin Lucía Cordero-Espinoza und die Postdoktorandin Anna Dowbaj, ein komplexeres Leberorganoid zu bauen, dass die zellulären Wechselbeziehungen und die Architektur des erwachsenen Lebergewebes besser nachahmt. Dazu fügten sie Leber-Mesenchym hinzu – eine Art regulatorische Zelle des Bindegewebes, die die röhrenförmige Struktur des Gallenganges unterstützt. „Wir haben die Mesenchymzellen in einer Petrischale neben das Organoid aus den Duktalzellen platziert und gesehen, dass sie sich nicht berühren oder verbinden, wie es im natürlichen Gewebe der Fall ist“, sagt Anna Dowbaj. Die Forscher wandten sich an Florian Hollfelder von der Universität Cambridge, der eine Methode kannte, die es ermöglicht, die Zellen in winzigen Gelen zu verbinden, sodass sie sich treffen und in Kontakt treten können. Anna Dowbaj fährt fort: „Wir waren gespannt darauf, wie unser neues und komplexeres Organoid die Architektur des Gewebes in der Schale nachbildet, also beschlossen wir, das Verhalten der Zellen zu untersuchen und filmten sie unter dem Mikroskop. Zu unserer Überraschung konnten wir ein völlig unerwartetes Verhalten beobachten: Das Gewebe (Organoid) schrumpfte bei Kontakt mit den Mesenchymzellen, wuchs aber, wenn kein Kontakt bestand. Dieses seltsame Verhalten war sehr verblüffend, es könnte uns aber dabei helfen zu klären, warum das Gewebe während des Regenerationsprozesses wuchs oder nicht mehr wuchs.“ 

Weniger ist mehr und mehr ist weniger
In einer gesunden Leber gibt es eine bestimmte Anzahl von Kontakten zwischen den Duktalzellen und den Mesenchymzellen, die den Duktalzellen signalisieren, dass sie sich nicht vermehren und einfach so verbleiben sollen, wie sie sind. Sobald das Gewebe beschädigt wird, verringern die Mesenchymzellen die Anzahl ihrer Kontakte mit den Duktalzellen, damit diese sich vermehren können, um den Schaden zu beheben. Aus ihren Beobachtungen schlossen die Forscher, dass nicht die Anzahl der beiden Zelltypen, sondern die Zahl der Zellkontakte bestimmt, wie viele Zellen zur Reparatur des beschädigten Gewebes produziert werden. Zu viele Berührungen durch mesenchymale Zellen bedeuten, dass weniger oder keine neuen duktalen Zellen gebildet werden, während weniger Berührungen bedeuten, dass mehr Zellen gebildet werden. Diese Regulierung ist sehr wichtig, denn wenn es kein Signal für die Duktalzellen gibt, ihre Vermehrung für die Gewebereparatur zu stoppen, kann es zu einer übermäßigen Vermehrung kommen, die zu Krebs führen kann. 

Meritxell Huch, die die Studie leitete, fasst zusammen: „Es ist das erste Mal, dass wir diese Kontakte sichtbar machen konnten, und wir haben zum ersten Mal bewiesen, dass sie existieren. Dies ist dank unserer organoiden Systeme möglich gewesen. Auch wenn wir unsere Experimente in einer Petrischale außerhalb des lebenden Körpers durchgeführt haben, gehen wir davon aus, dass derselbe Prozess im lebenden Organismus abläuft. Wir haben dies zu bestimmten Zeitpunkten während des Regenerationsprozesses beobachten können. Im lebenden Organismus konnten wir dies bisher noch nicht beobachten, weil die Technologie dafür nicht existiert. Während sich unsere Studie auf die duktal-mesenchymale Interaktion in der Leber konzentrierte, können wir uns vorstellen, dass ähnliche Mechanismen in jedem anderen System ablaufen, in dem sich die Zellzahlen dynamisch verändern, wie beispielsweise in der Lunge oder im Brustgewebe. Natürlich würden wir in Zukunft gerne ein Leberorganoid mit allen Zelltypen herstellen. Mit einem solchen Organoid könnte man Medikamente testen und sehen, ob diese nicht nur die sich regenerierenden Zellen, sondern auch ihre unterstützende Umgebung beeinflussen. Aber dafür müssen wir warten, bis die Technologie verfügbar ist.“

Originalpublikation:

Lucía Cordero-Espinoza, Anna M. Dowbaj, Timo N. Kohler, Bernhard Strauss, Olga Sarlidou, German Belenguer, Clare Pacini, Nuno P. Martins, Ross Dobie, John R. Wilson-Kanamori, Richard Butler, Nicole Prior, Palle Serup, Florian Jug, Neil C. Henderson, Florian Hollfelder and Meritxell Huch: Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation, Cell Stem Cell, 2. August 2021,
doi: 10.1016/j.stem.2021.07.002

Pressekontakt MPI-CBG
Katrin Boes
+49 (0) 351 210 2080
kboesmpi-cbg.de

Wissenschaftlicher Kontakt:
Prof. Meritxell Huch
+49 (0) 351 210 2830
huchmpi-cbg.de