What makes worms grow and develop

Researchers find a new class of lipids

Survival through a biochemical shortcut

Researchers unravel the metabolic basis that allows worms and yeast to survive extreme desiccation

Potential Parkinson's Treatment

Products of the gene DJ-1 increase survival of neurons

Waving worms giving themselves a leg up

Nematodes can build towers to reach host organisms

Career Day 2017 - Magalie Lebreton-Traoré

…Magalie Lebreton-Traoré Magalie Lebreton-Traoré carried out her PhD studies in Dr Teymuras Kurzchalia's laboratory at the Max Planck Institute for Cell Biology and Genetics in Germany from 2004 to 2008. She is a…

Archive: MS Western: The Method for Targeted Multiplexed Absolute Quantification of Proteins by GeLC-MS/MS

… Drosophila melanogaster. Proteomics, 20(23) Art. No. e1900049 (2020) DOI  Collaborations Kurzchalia lab Knust lab

Science Café: Parkinson's Disease

About current treatments and potential cures

Genome analysis of 46,000-year-old roundworm from Siberian permafrost reveals novel species

International research team shows that a newly discovered nematode species from the Pleistocene share a molecular toolkit for survival with the nematode Caenorhabditis elegans.

Alcohol prolongs lifespan of nematodes

Team of researchers investigate influence of alcohol on roundworm larvae

To the edge of life, and back again

Grant from Volkswagen Foundation for interdisciplinary project

Search results 1 until 10 of 16

Publications

* joint first author # joint corresponding author

2024
Kathrin Schmeisser#, Damla Kaptan, Bharath Kumar Raghuraman, Andrej Shevchenko, Jonathan Rodenfels, Sider Penkov, Teymuras V. Kurzchalia#
Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling.
Commun Biol, 7(1) Art. No. 121 (2024)
Open Access DOI
Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process.
2023
Xingyu Zhang, Sider Penkov, Teymuras V. Kurzchalia, Vasily Zaburdaev
Periodic ethanol supply as a path toward unlimited lifespan of Caenorhabditis elegans dauer larvae.
Front Aging, 4 Art. No. 1031161 (2023)
Open Access DOI
The dauer larva is a specialized stage of worm development optimized for survival under harsh conditions that have been used as a model for stress resistance, metabolic adaptations, and longevity. Recent findings suggest that the dauer larva of Caenorhabditis elegans may utilize external ethanol as an energy source to extend their lifespan. It was shown that while ethanol may serve as an effectively infinite source of energy, some toxic compounds accumulating as byproducts of its metabolism may lead to the damage of mitochondria and thus limit the lifespan of larvae. A minimal mathematical model was proposed to explain the connection between the lifespan of a dauer larva and its ethanol metabolism. To explore theoretically if it is possible to extend even further the lifespan of dauer larvae, we incorporated two natural mechanisms describing the recovery of damaged mitochondria and elimination of toxic compounds, which were previously omitted in the model. Numerical simulations of the revised model suggested that while the ethanol concentration is constant, the lifespan still stays limited. However, if ethanol is supplied periodically, with a suitable frequency and amplitude, the dauer could survive as long as we observe the system. Analytical methods further help to explain how feeding frequency and amplitude affect lifespan extension. Based on the comparison of the model with experimental data for fixed ethanol concentration, we proposed the range of feeding protocols that could lead to even longer dauer survival and it can be tested experimentally.


Anastasia Shatilovich*, Vamshidhar Gade*, Martin Pippel, Tarja T Hoffmeyer, Alexei V Tchesunov, Lewis Stevens, Sylke Winkler, Graham M Hughes, Sofia Traikov, Michael Hiller, Elisaveta Rivkina, Philipp H Schiffer#, Eugene W Myers, Teymuras V. Kurzchalia#
A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva.
PLoS Genet, 19(7) Art. No. e1010798 (2023)
Open Access DOI
Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.
2022
Kyoohyun Kim*, Vamshidhar Gade*, Teymuras V. Kurzchalia#, Jochen Guck#
Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition.
Biophys J, 121(7) 1219-1229 (2022)
Open Access DOI
Upon starvation or overcrowding, the nematode Caenorhabditis elegans enters diapause by forming a dauer larva, which can then further survive harsh desiccation in an anhydrobiotic state. We have previously identified the genetic and biochemical pathways essential for survival-but without detailed knowledge of their material properties, the mechanistic understanding of this intriguing phenomenon remains incomplete. Here we employed optical diffraction tomography (ODT) to quantitatively assess the internal mass density distribution of living larvae in the reproductive and diapause stages. ODT revealed that the properties of the dauer larvae undergo a dramatic transition upon harsh desiccation. Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that could not be observed by conventional microscopy. Our advance opens a door to quantitatively assessing the transitions in material properties and structure necessary to fully understand an organism on the verge of life and death.
2021
Veronica Diez, Sofia Traikov, Kathrin Schmeisser, Akshay Kumar Das Adhikari, Teymuras V. Kurzchalia
Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans.
Commun Biol, 4(1) Art. No. 151 (2021)
Open Access DOI
Upon exposure to excessive reactive oxygen species (ROS), organismal survival depends on the strength of the endogenous antioxidant defense barriers that prevent mitochondrial and cellular deterioration. Previously, we showed that glycolic acid can restore the mitochondrial membrane potential of C. elegans treated with paraquat, an oxidant that produces superoxide and other ROS species, including hydrogen peroxide. Here, we demonstrate that glycolate fully suppresses the deleterious effects of peroxide on mitochondrial activity and growth in worms. This endogenous compound acts by entering serine/glycine metabolism. In this way, conversion of glycolate into glycine and serine ameliorates the drastically decreased NADPH/NADP+ and GSH/GSSG ratios induced by H2O2 treatment. Our results reveal the central role of serine/glycine metabolism as a major provider of reducing equivalents to maintain cellular antioxidant systems and the fundamental function of glycolate as a natural antioxidant that improves cell fitness and survival.
2020
Damla Kaptan, Sider Penkov, Xingyu Zhang, Vamshidhar Gade, Bharath Kumar Raghuraman, Roberta Galli, Júlio L Sampaio, Robert Haase, Edmund Koch, Andrej Shevchenko, Vasily Zaburdaev, Teymuras V. Kurzchalia
Exogenous ethanol induces a metabolic switch that prolongs the survival of Caenorhabditis elegans dauer larva and enhances its resistance to desiccation.
Aging Cell, 19(10) Art. No. e13214 (2020)
Open Access DOI
The dauer larva of Caenorhabditis elegans, destined to survive long periods of food scarcity and harsh environment, does not feed and has a very limited exchange of matter with the exterior. It was assumed that the survival time is determined by internal energy stores. Here, we show that ethanol can provide a potentially unlimited energy source for dauers by inducing a controlled metabolic shift that allows it to be metabolized into carbohydrates, amino acids, and lipids. Dauer larvae provided with ethanol survive much longer and have greater desiccation tolerance. On the cellular level, ethanol prevents the deterioration of mitochondria caused by energy depletion. By modeling the metabolism of dauers of wild-type and mutant strains with and without ethanol, we suggest that the mitochondrial health and survival of an organism provided with an unlimited source of carbon depends on the balance between energy production and toxic product(s) of lipid metabolism.


Vamshidhar Gade, Sofia Traikov, Jana Oertel, Karim Fahmy, Teymuras V. Kurzchalia
C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress.
Sci Rep, 10(1) Art. No. 13466 (2020)
Open Access DOI
All organisms encounter abiotic stress but only certain organisms are able to cope with extreme conditions and enter into cryptobiosis (hidden life). Previously, we have shown that C. elegans dauer larvae can survive severe desiccation (anhydrobiosis), a specific form of cryptobiosis. Entry into anhydrobiosis is preceded by activation of a set of biochemical pathways by exposure to mild desiccation. This process called preconditioning induces elevation of trehalose, intrinsically disordered proteins, polyamines and some other pathways that allow the preservation of cellular functionality in the absence of water. Here, we demonstrate that another stress factor, high osmolarity, activates similar biochemical pathways. The larvae that acquired resistance to high osmotic pressure can also withstand desiccation. In addition, high osmolarity significantly increases the biosynthesis of glycerol making larva tolerant to freezing. Thus, to survive abiotic stress, C. elegans activates a combination of genetic and biochemical pathways that serve as a general survival program.


Sider Penkov*, Bharath Kumar Raghuraman*, Cihan Erkut, Jana Oertel, Roberta Galli, Eduardo Jacobo Miranda Ackerman, Daniela Vorkel, Jean-Marc Verbavatz, Edmund Koch, Karim Fahmy, Andrej Shevchenko, Teymuras V. Kurzchalia
A metabolic switch regulates the transition between growth and diapause in C. elegans.
BMC Biol, 18(1) Art. No. 31 (2020)
Open Access DOI
Metabolic activity alternates between high and low states during different stages of an organism's life cycle. During the transition from growth to quiescence, a major metabolic shift often occurs from oxidative phosphorylation to glycolysis and gluconeogenesis. We use the entry of Caenorhabditis elegans into the dauer larval stage, a developmentally arrested stage formed in response to harsh environmental conditions, as a model to study the global metabolic changes and underlying molecular mechanisms associated with growth to quiescence transition.


Takashi Namba#, Judit Dóczi, Anneline Pinson, Lei Xing, Nereo Kalebic, Michaela Wilsch-Bräuninger, Katherine S. Long, Samir Vaid, Janelle Lauer, Aliona Bogdanova, Barbara Borgonovo, Anna Shevchenko, Patrick Keller, David N. Drechsel, Teymuras V. Kurzchalia, Pauline Wimberger, Christos Chinopoulos, Wieland Huttner#
Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis.
Neuron, 105(5) 867-881 (2020)
DOI
The human-specific gene ARHGAP11B is preferentially expressed in neural progenitors of fetal human neocortex and increases abundance and proliferation of basal progenitors (BPs), which have a key role in neocortex expansion. ARHGAP11B has therefore been implicated in the evolutionary expansion of the human neocortex, but its mode of action has been unknown. Here, we show that ARHGAP11B is imported into mitochondria, where it interacts with the adenine nucleotide translocase (ANT) and inhibits the mitochondrial permeability transition pore (mPTP). BP expansion by ARHGAP11B requires its presence in mitochondria, and pharmacological inhibition of ANT function or mPTP opening mimic BP expansion by ARHGAP11B. Searching for the underlying metabolic basis, we find that BP expansion by ARHGAP11B requires glutaminolysis, the conversion of glutamine to glutamate for the tricarboxylic acid (TCA) cycle. Hence, an ARHGAP11B-induced, mitochondria-based effect on BP metabolism that is a hallmark of highly mitotically active cells appears to underlie its role in neocortex expansion.
2018
Celina Galles, Gastón M Prez, Sider Penkov, Sebastian Boland, Exequiel O J Porta, Silvia G Altabe, Guillermo R Labadie, Ulrike Schmidt, Hans-Joachim Knölker, Teymuras V. Kurzchalia#, Diego Mendoza#
Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves.
Sci Rep, 8(1) Art. No. 6398 (2018)
Open Access DOI
Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.
2017
Yusuke Toyoda*, Cedric J Cattin*, Martin P Stewart*, Ina Poser, Mirko Theis, Teymuras V. Kurzchalia, Frank Buchholz, Anthony Hyman#, Daniel J. Müller#
Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.
Nat Commun, 8(1) Art. No. 1266 (2017)
Open Access DOI
To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.


Sebastian Boland, Ulrike Schmidt, Vyacheslav Zagoriy, Julio Sampaio, Raphael F Fritsche, Regina Czerwonka, Tilo Lübken, Jakob Reimann, Sider Penkov, Hans-Joachim Knölker, Teymuras V. Kurzchalia
Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans.
Nat Chem Biol, 13(6) 647-654 (2017)
DOI
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-β mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-β, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.
2016
Cihan Erkut, Vamshidhar Gade, Sunil Laxman, Teymuras V. Kurzchalia
The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.
Elife, 5 Art. No. e13614 (2016)
Open Access PDF DOI
Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast.


Mykola Mylenko, Sebastian Boland, Sider Penkov, Julio Sampaio, Benoit Lombardot, Daniela Vorkel, Jean-Marc Verbavatz, Teymuras V. Kurzchalia
NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans.
PLoS ONE, 11(12) Art. No. e0167208 (2016)
Open Access PDF DOI
The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s) present in food, referred to as the "food signal", promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.
2015
Cihan Erkut, Teymuras V. Kurzchalia
The C. elegans dauer larva as a paradigm to study metabolic suppression and desiccation tolerance.
Planta, 242(2) 389-396 (2015)
DOI
The hypometabolic, stress-resistant dauer larva of Caenorhabditis elegans serves as an excellent model to study the molecular mechanisms of desiccation tolerance, such as maintenance of membrane organization, protein folding, xenobiotic and ROS detoxification in the dry state. Many organisms from diverse taxa of life have the remarkable ability to survive extreme desiccation in the nature by entering an ametabolic state known as anhydrobiosis (life without water). The hallmark of the anhydrobiotic state is the achievement and maintenance of an exceedingly low metabolic rate, as well as preservation of the structural integrity of the cell. Although described more than three centuries ago, the biochemical and biophysical mechanisms underlying this phenomenon are still not fully comprehended. This is mainly due to the fact that anhydrobiosis in animals was studied using non-model organisms, which are very difficult, if not impossible, to manipulate at the molecular level. Recently, we introduced the roundworm (nematode) Caenorhabditis elegans as a model for anhydrobiosis. Taking advantage of powerful genetic, biochemical and biophysical tools, we investigated several aspects of anhydrobiosis in a particular developmental stage (the dauer larva) of this organism. First, our studies allowed confirming the previously suggested role of the disaccharide trehalose in the preservation of lipid membranes. Moreover, in addition to known pathways such as reactive oxygen species defense, heat-shock and intrinsically disordered protein expression, evidence for some novel strategies of anhydrobiosis has been obtained. These are increased glyoxalase activity, polyamine and polyunsaturated fatty acid biosynthesis. All these pathways may constitute a generic toolbox of anhydrobiosis, which is possibly conserved between animals and plants.


Sider Penkov, Damla Kaptan, Cihan Erkut, Mihail Sarov, Fanny Mende, Teymuras V. Kurzchalia
Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans.
Nat Commun, 6 Art. No. 8060 (2015)
DOI
Under adverse conditions, Caenorhabditis elegans enters a diapause stage called the dauer larva. External cues signal the nuclear hormone receptor DAF-12, the activity of which is regulated by its ligands: dafachronic acids (DAs). DAs are synthesized from cholesterol, with the last synthesis step requiring NADPH, and their absence stimulates dauer formation. Here we show that NADPH levels determine dauer formation in a regulatory mechanism involving key carbohydrate and redox metabolic enzymes. Elevated trehalose biosynthesis diverts glucose-6-phosphate from the pentose phosphate pathway, which is the major source of cellular NADPH. This enhances dauer formation due to the decrease in the DA level. Moreover, DAF-12, in cooperation with DAF-16/FoxO, induces negative feedback of DA synthesis via activation of the trehalose-producing enzymes TPS-1/2 and inhibition of the NADPH-producing enzyme IDH-1. Thus, the dauer developmental decision is controlled by integration of the metabolic flux of carbohydrates and cellular redox potential.
2014
Sawsan E Abusharkh, Cihan Erkut, Jana Oertel, Teymuras V. Kurzchalia, Karim Fahmy
The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans.
Langmuir, 30(43) 12897-12906 (2014)
DOI
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.


Yusuke Toyoda, Cihan Erkut, Francisco Pan-Montojo, Sebastian Boland, Martin P Stewart, Daniel J. Müller, Wolfgang Wurst, Anthony Hyman, Teymuras V. Kurzchalia
Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival.
Biol Open, 3(8) 777-784 (2014)
PDF DOI
Parkinson's disease is associated with mitochondrial decline in dopaminergic neurons of the substantia nigra. One of the genes linked with the onset of Parkinson's disease, DJ-1/PARK7, belongs to a novel glyoxalase family and influences mitochondrial activity. It has been assumed that glyoxalases fulfill this task by detoxifying aggressive aldehyde by-products of metabolism. Here we show that supplying either D-lactate or glycolate, products of DJ-1, rescues the requirement for the enzyme in maintenance of mitochondrial potential. We further show that glycolic acid and D-lactic acid can elevate lowered mitochondrial membrane potential caused by silencing PINK-1, another Parkinson's related gene, as well as by paraquat, an environmental toxin known to be linked with Parkinson's disease. We propose that DJ-1 and consequently its products are components of a novel pathway that stabilizes mitochondria during cellular stress. We go on to show that survival of cultured mesencephalic dopaminergic neurons, defective in Parkinson's disease, is enhanced by glycolate and D-lactate. Because glycolic and D-lactic acids occur naturally, they are therefore a potential therapeutic route for treatment or prevention of Parkinson's disease.


Sider Penkov, Akira Ogawa, Ulrike Schmidt, Dhananjay Tate, Vyacheslav Zagoriy, Sebastian Boland, Margit Gruner, Daniela Vorkel, Jean-Marc Verbavatz, Ralf J Sommer, Hans-Joachim Knölker, Teymuras V. Kurzchalia
A wax ester promotes collective host finding in the nematode Pristionchus pacificus.
Nat Chem Biol, 10(4) 281-285 (2014)
DOI
Survival of nematode species depends on how successfully they disperse in the habitat and find a new host. As a new strategy for collective host finding in the nematode Pristionchus pacificus, dauer larvae synthesize an extremely long-chain polyunsaturated wax ester (nematoil) that covers the surface of the animal. The oily coat promotes congregation of up to one thousand individuals into stable 'dauer towers' that can reach a beetle host more easily.


Cyrus Papan, Sider Penkov, Ronny Herzog, Christoph Thiele, Teymuras V. Kurzchalia, Andrej Shevchenko
Systematic screening for novel lipids by shotgun lipidomics.
Anal Chem, 86(5) 2703-2710 (2014)
DOI
A commonly accepted LIPID MAPS classification recognizes eight major lipid categories and over 550 classes, while new lipid classes are still being discovered by targeted biochemical approaches. Despite their compositional diversity, complex lipids such as glycerolipids, glycerophospholipids, saccharolipids, etc. are constructed from unique structural moieties, e.g., glycerol, fatty acids, choline, phosphate, and trehalose, that are linked by amide, ether, ester, or glycosidic bonds. This modular organization is also reflected in their MS/MS fragmentation pathways, such that common building blocks in different lipid classes tend to generate common fragments. We take advantage of this stereotyped fragmentation to systematically screen for new lipids sharing distant structural similarity to known lipid classes and have developed a discovery approach based on the computational querying of shotgun mass spectra by LipidXplorer software. We applied this concept for screening lipid extracts of C. elegans larvae at the dauer and L3 stages that represent alternative developmental programs executed in response to environmental challenges. The search, covering more than 1.5 million putative chemical compositions, identified a novel class of lyso-maradolipids specifically enriched in dauer larvae.
2013
Cihan Erkut, Andrej Vasilj, Sebastian Boland, Bianca Habermann, Andrej Shevchenko, Teymuras V. Kurzchalia
Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation.
PLoS ONE, 8(12) Art. No. e82473 (2013)
DOI
Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.
2012
Kim Schneider, Thomas Köcher, Teemu Andersin, Teymuras V. Kurzchalia, Ueli Schibler, David Gatfield
CAVIN-3 regulates circadian period length and PER:CRY protein abundance and interactions.
EMBO Rep, 13(12) 1138-1144 (2012)
DOI
In mammals, transcriptional autorepression by Period (PER) and Cryptochrome (CRY) protein complexes is essential for the generation of circadian rhythms. We have identified CAVIN-3 as a new, cytoplasmic PER2-interacting protein influencing circadian clock properties. Thus, CAVIN-3 loss- and gain-of-function shortened and lengthened, respectively, the circadian period in fibroblasts and affected PER:CRY protein abundance and interaction. While depletion of protein kinase Cδ (PKCδ), a known partner of CAVIN-3, had little effect on circadian gene expression, CAVIN-3 required the PKCδ-binding site to exert its effect on period length. This suggests the involvement of yet uncharacterized protein kinases. Finally, CAVIN-3 activity in circadian gene expression was independent of caveolae.


Ratni Saini, Sebastian Boland, Olga Kataeva, Arndt W Schmidt, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals.
Org Biomol Chem, 10(21) 4159-4163 (2012)
DOI
A stereoselective synthesis of (25S)-Δ(1)-, (25S)-Δ(1,4)-, (25S)-Δ(1,7)-, (25S)-Δ(8(14))-, (25S)-Δ(4,6,8(14))-dafachronic acid, methyl (25S)-Δ(1,4)-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ(1,4)-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids.


Cihan Erkut, Sider Penkov, Karim Fahmy, Teymuras V. Kurzchalia
How worms survive desiccation: Trehalose pro water.
Worm, 1(1) 61-65 (2012)
PDF DOI
While life requires water, many organisms, known as anhydrobiotes, can survive in the absence of water for extended periods of time. Although discovered 300 years ago, we know very little about the fascinating phenomenon of anhydrobiosis. In this paper, we summarize our previous findings on the desiccation tolerance of the Caenorhabditis elegans dauer larva. A special emphasis is given to the role of trehalose in protecting membranes against desiccation. We also propose a simple mechanism for this process.
2011
Ulrike Pässler, Margit Gruner, Sider Penkov, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Synthesis of Ten Members of the Maradolipid Family; Novel Diacyltrehalose Glycolipids from Caenorhabditis elegans
SYNLETT, 22(17) 2482-2486 (2011)
DOI


Cihan Erkut, Sider Penkov, Hassan Khesbak, Daniela Vorkel, Jean-Marc Verbavatz, Karim Fahmy, Teymuras V. Kurzchalia
Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation.
Curr Biol, 21(15) 1331-1336 (2011)
DOI
Water is essential for life on Earth. In its absence, however, some organisms can interrupt their life cycle and temporarily enter an ametabolic state, known as anhydrobiosis [1]. It is assumed that sugars (in particular trehalose) are instrumental for survival under anhydrobiotic conditions [2]. However, the role of trehalose remained obscure because the corresponding evidence was purely correlative and based mostly on in vitro studies without any genetic manipulations of trehalose metabolism. In this study, we used C. elegans as a genetic model to investigate molecular mechanisms of anhydrobiosis. We show that the C. elegans dauer larva is a true anhydrobiote: under defined conditions it can survive even after losing 98% of its body water. This ability is correlated with a several fold increase in the amount of trehalose. Mutants unable to synthesize trehalose cannot survive even mild dehydration. Light and electron microscopy indicate that one of the major functions of trehalose is the preservation of membrane organization. Fourier-transform infrared spectroscopy of whole worms suggests that this is achieved by preserving homogeneous and compact packing of lipid acyl chains. By means of infrared spectroscopy, we can now distinguish a "dry, yet alive" larva from a "dry and dead" one.
2010
Sider Penkov*, Fanny Mende*, Vyacheslav Zagoriy, Cihan Erkut, René Martin, Ulrike Pässler, Kai Schuhmann, Dominik Schwudke, Margit Gruner, Jana Mäntler, Thomas Müller-Reichert, Andrej Shevchenko, Hans-Joachim Knölker, Teymuras V. Kurzchalia
Maradolipids: Diacyltrehalose Glycolipids Specific to Dauer Larva in Caenorhabditis elegans.
Angew Chem Int Ed Engl, 49(49) 9430-9435 (2010)
PDF DOI


Maria Carvalho, Dominik Schwudke, Julio Sampaio, Wilhelm Palm, Isabelle Riezman, Gautam Dey, Gagan D Gupta, Satyajit Mayor, Howard Riezman, Andrej Shevchenko, Teymuras V. Kurzchalia#, Suzanne Eaton#
Survival strategies of a sterol auxotroph.
Development, 137(21) 3675-3685 (2010)
PDF DOI
The high sterol concentration in eukaryotic cell membranes is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila cannot synthesize sterols, but do require them for development. Does this simply reflect a requirement for sterols in steroid hormone biosynthesis, or is bulk membrane sterol also essential in Drosophila? If the latter is true, how do they survive fluctuations in sterol availability and maintain membrane homeostasis? Here, we show that Drosophila require both bulk membrane sterol and steroid hormones in order to complete adult development. When sterol availability is restricted, Drosophila larvae modulate their growth to maintain membrane sterol levels within tight limits. When dietary sterol drops below a minimal threshold, larvae arrest growth and development in a reversible manner. Strikingly, membrane sterol levels in arrested larvae are dramatically reduced (dropping sixfold on average) in most tissues except the nervous system. Thus, sterols are dispensable for maintaining the basic membrane biophysical properties required for cell viability; these functions can be performed by non-sterol lipids when sterols are unavailable. However, bulk membrane sterol is likely to have essential functions in specific tissues during development. In tissues in which sterol levels drop, the overall level of sphingolipids increases and the proportion of different sphingolipid variants is altered. These changes allow survival, but not growth, when membrane sterol levels are low. This relationship between sterols and sphingolipids could be an ancient and conserved principle of membrane homeostasis.


Vyacheslav Zagoriy, Vitali Matyash, Teymuras V. Kurzchalia
Long-chain O-ascarosyl-alkanediols are constitutive components of Caenorhabditis elegans but do not induce dauer larva formation.
Chem Biodivers, 7(8) 2016-2022 (2010)
PDF DOI
Two long-chain ascarosides, O-ascarosylnonacosane-2,28-diol and O-ascarosyluntriacontane-2,30-diol, were isolated from Caenorhabditis elegans and detected in all developmental stages of the worm. The long-chain ascarosides were shown to be minor lipid components, and it was also shown that they do not induce dauer larva formation.


Pablo S Aguilar, Maxwell G Heiman, Tobias C Walther, Alex Engel, Dominik Schwudke, Nathan Gushwa, Teymuras V. Kurzchalia, Peter Walter
Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating.
Proc Natl Acad Sci U.S.A., 107(9) 4170-4175 (2010)
PDF DOI
Under mating conditions, yeast cells adopt a characteristic pear-shaped morphology, called a "shmoo," as they project a cell extension toward their mating partners. Mating partners make contact at their shmoo tips, dissolve the intervening cell wall, and fuse their plasma membranes. We identified mutations in ERG4, encoding the enzyme that catalyzes the last step of ergosterol biosynthesis, that impair both shmoo formation and cell fusion. Upon pheromone treatment, erg4Delta mutants polarized growth, lipids, and proteins involved in mating but did not form properly shaped shmoos and fused with low efficiency. Supplementation with ergosterol partially suppressed the shmooing defect but not the cell fusion defect. By contrast, removal of the Erg4 substrate ergosta-5,7,22,24(28)-tetraenol, which accumulates in erg4Delta mutant cells and contains an extra double bond in the aliphatic chain of the sterol, restored both shmooing and cell fusion to wild-type levels. Thus, a two-atom change in the aliphatic moiety of ergosterol is sufficient to obstruct cell shape remodeling and cell fusion.


René Martin, Eugeni V. Entchev, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology.
Org Biomol Chem, 8(4) 739-750 (2010)
PDF DOI
Cholesterol-derived hormones, the dafachronic acids, play a major role in controlling the life cycle and initiating dauer larva formation of the nematode Caenorhabditis elegans. This Perspective describes recent progress in the synthesis of these steroid hormones and their biological function.
2009
René Martin, Tina Schäfer, Gabriele Theumer, Eugeni V. Entchev, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Improved Synthesis of an Ascaroside Pheromone Controlling Dauer Larva Development in Caenorhabditis elegans
Synthesis, 41(20) 3488-3492 (2009)
DOI
Using an efficient Wacker oxidation as a key step, we describe a significantly improved synthesis of the dauer-promoting ascaroside 2 for biological studies of the novel sterol ring methylase STRM-1.


René Martin, Eugeni V. Entchev, Frank Däbritz, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Synthesis and Hormonal Activity of the (25S)-Cholesten-26-oic Acids – Potent Ligands for the DAF-12 Receptor in Caenorhabditis elegans
Eur J Org Chem, (22) 3703-3714 (2009)
PDF DOI
Using a highly stereoselective Evans aldol reaction for the introduction of the stereogenic center at C-25, we describe an efficient synthesis of the orthogonally diprotected (25S)-26-hydroxycholesterol 11. In a few synthetic steps, this crucial intermediate 11 has been converted into the four (25S)-cholesten-26-oic acids 1–4, which have been obtained in 12–15 steps and 19–53% overall yield based on commerciallyavailable 3β-hydroxychol-5-en-24-oic acid (5). Our biological studies of the compounds 1–4 reveal that (25S)-Δ7-dafachronic acid (1) represents the most active steroidal ligand for the hormonal receptor DAF-12 in Caenorhabditis elegans. Moreover, the aturated (25S)-dafachronic acid (3) represents a new ligand for this receptor and the (25S)-steroidal acids are more active as compared to their corresponding (25R)-counterparts.


J Thomas Hannich*, Eugeni V. Entchev*, Fanny Mende, Hristio Boytchev, René Martin, Vyacheslav Zagoriy, Gabriele Theumer, Isabelle Riezman, Howard Riezman, Hans-Joachim Knölker, Teymuras V. Kurzchalia
Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans.
Dev Cell, 16(6) 833-843 (2009)
PDF DOI
In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.


René Martin, Ratni Saini, Ingmar Bauer, Margit Gruner, Olga Kataeva, Vyacheslav Zagoriy, Eugeni V. Entchev, Teymuras V. Kurzchalia, Hans-Joachim Knölker
4Alpha-bromo-5alpha-cholestan-3beta-ol and nor-5alpha-cholestan-3beta-ol derivatives-stereoselective synthesis and hormonal activity in Caenorhabditis elegans.
Org Biomol Chem, 7(11) 2303-2309 (2009)
PDF DOI
We describe the stereoselective synthesis of 4alpha-bromo-5alpha-cholestan-3beta-ol, 21-nor-5alpha-cholestan-3beta-ol, 27-nor-5alpha-cholestan-3beta-ol and 21,27-bisnor-5alpha-cholestan-3beta-ol. In order to clarify the in vivo metabolism of cholesterol, these compounds have been used for feeding experiments in Caenorhabditis elegans. Our preliminary results provide important insights into the metabolism of cholesterol in worms.


René Martin, Arndt W Schmidt, Gabriele Theumer, Tilo Krause, Eugeni V. Entchev, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Synthesis and biological activity of the (25R)-cholesten-26-oic acids--ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans.
Org Biomol Chem, 7(5) 909-920 (2009)
PDF DOI
We describe the stereoselective transformation of diosgenin (4a) to (25R)-Delta(4)-dafachronic acid (1a),(25R)-Delta(7)-dafachronic acid (2a), and (25R)-cholestenoic acid (3a), which represent potential ligands forthe hormonal receptor DAF-12 in Caenorhabditis elegans. Key-steps of our synthetic approach are amodified Clemmensen reduction of diosgenin (4a) and a double bond shift from the 5,6- to the 7,8-position. In the 25R-series, the Delta(7)-dafachronic acid 2a exhibits the highest hormonal activity.


Gaspare Benenati, Sider Penkov, Thomas Müller-Reichert, Eugeni V. Entchev, Teymuras V. Kurzchalia
Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo.
Mech Dev, 126(5-6) 382-393 (2009)
PDF DOI
The role of lipids in the process of embryonic development of Caenorhabditis elegans is still poorly understood. Cytochrome P450s, a class of lipid-modifying enzymes, are good candidates to be involved in the production or degradation of lipids essential for development. We investigated two highly similar cytochrome P450s in C. elegans, cyp-31A2 and cyp-31A3, that are homologs of the gene responsible for Bietti crystalline corneoretinal dystrophy in humans. Depletion of both cytochromes either by RNAi or using a double deletion mutant, led to the failure of establishing the correct polarity of the embryo and to complete the extrusion of the polar bodies during meiosis. In addition, the egg became osmotic sensitive and permeable to dyes. The phenotype of cyp-31A2 or cyp-31A3 is very similar to a class of mutants that have polarization and osmotic defects (POD), thus the genes were renamed to pod-7 and pod-8, respectively. Electron microscopic analysis demonstrated that the activity of pod-7/pod-8 is crucial for the proper assembly of the eggshell and, in particular, for the production of its lipid-rich layer. Using a complementation with lipid extracts, we show that POD-7/POD-8 function together with a NADPH cytochrome P450 reductase, coded by emb-8, and are involved in the production of lipid(s) required for eggshell formation.
2008
René Martin, Frank Däbritz, Eugeni V. Entchev, Teymuras V. Kurzchalia, Hans-Joachim Knölker
Stereoselective synthesis of the hormonally active (25S)-delta7-dafachronic acid, (25S)-Delta4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid.
Org Biomol Chem, 6(23) 4293-4295 (2008)
PDF DOI
We report a stereoselective synthesis of the (25S)-cholestenoic-26-acids which are highly efficient ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans.


Eugeni V. Entchev, Dominik Schwudke, Vyacheslav Zagoriy, Vitali Matyash, Aliona Bogdanova, Bianca Habermann, Lin Zhu, Andrej Shevchenko, Teymuras V. Kurzchalia
LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans.
J Biol Chem, 283(25) 17550-17560 (2008)
PDF DOI
LET-767 from Caenorhabditis elegans belongs to a family of short chain dehydrogenases/reductases and is homologous to 17beta-hydroxysterol dehydrogenases of type 3 and 3-ketoacyl-CoA reductases. Worms subjected to RNA interference (RNAi) of let-767 displayed multiple growth and developmental defects in the first generation and arrested in the second generation as L1 larvae. To determine the function of LET-767 in vivo, we exploited a biochemical complementation approach, in which let-767 (RNAi)-arrested larvae were rescued by feeding with compounds isolated from wild type worms. The arrest was only rescued by the addition of triacylglycerides extracted from worms but not from various natural sources, such as animal fats and plant oils. The mass spectrometric analyses showed alterations in the fatty acid content of triacylglycerides. Essential for the rescue were odd-numbered fatty acids with monomethyl branched chains. The rescue was improved when worms were additionally supplemented with long chain even-numbered fatty acids. Remarkably, let-767 completely rescued the yeast 3-ketoacyl-CoA reductase mutant (ybr159Delta). Because worm ceramides exclusively contain a monomethyl branched chain sphingoid base, we also investigated ceramides in let-767 (RNAi). Indeed, the amount of ceramides was greatly reduced, and unusual sphingoid bases were observed. Taken together, we conclude that LET-767 is a major 3-ketoacyl-CoA reductase in C. elegans required for the bulk production of monomethyl branched and long chain fatty acids, and the developmental arrest in let-767 (RNAi) worms is caused by the deficiency of the former.


Vitali Matyash, Gerhard Liebisch, Teymuras V. Kurzchalia, Andrej Shevchenko, Dominik Schwudke
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics.
J Lipid Res, 49(5) 1137-1146 (2008)
PDF DOI
Accurate profiling of lipidomes relies upon the quantitative and unbiased recovery of lipid species from analyzed cells, fluids, or tissues and is usually achieved by two-phase extraction with chloroform. We demonstrated that methyl-tert-butyl ether (MTBE) extraction allows faster and cleaner lipid recovery and is well suited for automated shotgun profiling. Because of MTBE's low density, lipid-containing organic phase forms the upper layer during phase separation, which simplifies its collection and minimizes dripping losses. Nonextractable matrix forms a dense pellet at the bottom of the extraction tube and is easily removed by centrifugation. Rigorous testing demonstrated that the MTBE protocol delivers similar or better recoveries of species of most all major lipid classes compared with the "gold-standard" Folch or Bligh and Dyer recipes.


Susanne Heimerl*, Gerhard Liebisch*, Soazig Le Lay, Alfred Böttcher, Philipp Wiesner, Silke Lindtner, Teymuras V. Kurzchalia, Kai Simons, Gerd Schmitz
Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice.
Biochem Biophys Res Commun, 367(4) 826-833 (2008)
PDF DOI
Caveolae are specialized membrane microdomains formed as the result of local accumulation of cholesterol, glycosphingolipids, and the structural protein caveolin-1 (Cav-1). To further elucidate the role of Cav-1 in lipid homeostasis in-vivo, we analyzed fasting and post-prandial plasma from Cav-1 deficient mice on low or on high fat diet. In total plasma analysis, an increase in ceramide and hexosylceramide was observed. In cholesteryl ester (CE), we found an increased saturated+monounsaturated/polyunsaturated fatty acid ratio in fasting plasma of low fat fed Cav-1(-/-) mice with increased proportions of CE16:1, CE18:1, CE20:3, and decreased proportions of CE18:2 and CE22:6. Under high fat diet HDL-CE, free cholesterol and pre-beta-HDL were increased accompanied by a shift from slow to fast migrating alpha-HDL and expansion of apoE containing HDL. Our results demonstrate a significant role of Cav-1 in HDL-cholesterol metabolism and may reflect a variety of Cav-1 functions including modulation of ACAT activity and SR-BI function.
2007
Dominik Schwudke, J Thomas Hannich, Vineeth Surendranath, Vinciane Grimard, Thomas Moehring, Lyle Burton, Teymuras V. Kurzchalia, Andrej Shevchenko
Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra.
Anal Chem, 79(11) 4083-4093 (2007)
PDF DOI
Direct profiling of total lipid extracts on a hybrid LTQ Orbitrap mass spectrometer by high-resolution survey spectra clusters species of 11 major lipid classes into 7 groups, which are distinguished by their sum compositions and could be identified by accurately determined masses. Rapid acquisition of survey spectra was employed as a "top-down" screening tool that, together with the computational method of principal component analysis, revealed pronounced perturbations in the abundance of lipid precursors within the entire series of experiments. Altered lipid precursors were subsequently identified either by accurately determined masses or by in-depth MS/MS characterization that was performed on the same instrument. Hence, the sensitivity, throughput and robustness of lipidomics screens were improved without compromising the accuracy and specificity of molecular species identification. The top-down lipidomics strategy lends itself for high-throughput screens complementing ongoing functional genomics efforts.
2006
Manuel A Fernández*, Cecilia Albor*, Mercedes Ingelmo-Torres, Susan J. Nixon, Charles Ferguson, Teymuras V. Kurzchalia, Francesc Tebar, Carlos Enrich, Robert G. Parton, Albert Pol
Caveolin-1 is essential for liver regeneration.
Science, 313(5793) 1628-1632 (2006)
PDF DOI
Liver regeneration is an orchestrated cellular response that coordinates cell activation, lipid metabolism, and cell division. We found that caveolin-1 gene-disrupted mice (cav1-/- mice) exhibited impaired liver regeneration and low survival after a partial hepatectomy. Hepatocytes showed dramatically reduced lipid droplet accumulation and did not advance through the cell division cycle. Treatment of cav1-/- mice with glucose (which is a predominant energy substrate when compared to lipids) drastically increased survival and reestablished progression of the cell cycle. Thus, caveolin-1 plays a crucial role in the mechanisms that coordinate lipid metabolism with the proliferative response occurring in the liver after cellular injury.


Jens Waschke, Nikola Golenhofen, Teymuras V. Kurzchalia, Detlev Drenckhahn
Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent.
Histochem Cell Biol, 126(1) 17-26 (2006)
PDF DOI
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78+/-6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86+/-18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1.


Soazig Le Lay*, Eric Hajduch*, Margaret R Lindsay, Xavier Le Lièpvre, Christoph Thiele, Pascal Ferré, Robert G. Parton, Teymuras V. Kurzchalia, Kai Simons, Isabelle Dugail
Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis.
Traffic, 7(5) 549-561 (2006)
PDF DOI
We have investigated the targeting of caveolin to lipid bodies in adipocytes that express high levels of caveolins and contain well-developed lipid droplets. We observed that the lipid droplets isolated from adipocytes of caveolin-1 knock out mice contained dramatically reduced levels of cholesterol, indicating that caveolin is required for maintaining the cholesterol content of this organelle. Analysis of caveolin distribution by cell fractionation and fluorescent light microscopy in 3T3-L1 adipocytes indicated that addition of cholesterol rapidly stimulated translocation of caveolin to lipid droplets. The cholesterol-induced trafficking of caveolins to lipid droplets was shown to be dynamin- and protein kinase C (PKC)-dependent and modulated by src tyrosine kinase activation, suggesting a role for caveolar endocytosis in this novel trafficking pathway. Consistent with this, caveolae budding was stimulated by cholesterol addition. The present data identify lipid droplets as potential target organelles for caveolar endocytosis and demonstrate a role for caveolin-1 in the maintenance of free cholesterol levels in adipocyte lipid droplets.


Jun Yu, Sonia Bergaya, Takahisa Murata, Ilkay F. Alp, Michael P. Bauer, Michelle I Lin, Marek Drab, Teymuras V. Kurzchalia, Radu V Stan, William C Sessa
Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels.
J Clin Invest, 116(5) 1284-1291 (2006)
PDF DOI
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels.


Arndt W Schmidt, Thomas Doert, Sigrid Goutal, Margit Gruner, Fanny Mende, Teymuras V. Kurzchalia#, Hans-Joachim Knölker#
Regio- and Stereospecific Synthesis of Cholesterol Derivatives and their Hormonal Activity in Caenorhabditis elegans
Eur J Org Chem, 16 3687-3706 (2006)
PDF
Cholesterol is essential for the survival of the nematode Caenorhabditis elegans. Recent studies have demonstrated that cholesterol derivatives regulate two processes in the life cycle of worms: controlling molting and inducing a specialized non-feeding larval stage. However, the chemical structure of the cholesterol-derived signalling molecules for these or any other functions has not yet been identified. Herein, we describe the regio- and stereospecific synthesis of a number of cholesterol derivatives. The lithium-ammonia reduction of 4-cholesten-3-one was utilized to develop a general method for the introduction of diverse functional groups at C-4 of 5-cholestan-3-ol. Stereoselective functionalization at C-7 was achieved starting from 7-ketocholesterol derivatives. 6-Keto-5-cholestan-3-ol was utilized for specific functionalizations at C-6 and C-7. The structure-activity relationships of the different cholesterol derivatives have been investigated by feeding worms of different genetic background with these compounds. Our study is the first step in assigning the relationships of hormonal activity in C. elegans on the substitution at different positions of cholesterol.


Dominik Schwudke, Jeffrey Oegema, Lyle Burton, Eugeni V. Entchev, J Thomas Hannich, Christer S. Ejsing, Teymuras V. Kurzchalia, Andrej Shevchenko
Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition.
Anal Chem, 78(2) 585-595 (2006)
PDF DOI
Data-dependent acquisition of MS/MS spectra from lipid precursors enables to emulate the simultaneous acquisition of an unlimited number of precursor and neutral loss scans in a single analysis. This approach takes full advantage of rich fragment patterns in tandem mass spectra of lipids and enables their profiling by complex (Boolean) scans, in which masses of several fragment ions are considered within a single logical framework. No separation of lipids is required, and the accuracy of identification and quantification is not compromised, compared to conventional precursor and neutral loss scanning.
2005
Soazig Le Lay, Teymuras V. Kurzchalia
Getting rid of caveolins: phenotypes of caveolin-deficient animals.
Biochim Biophys Acta, 1746(3) 322-333 (2005)
PDF DOI
The elucidation of the role of caveolae has been the topic of many investigations which were greatly enhanced after the discovery of caveolin, the protein marker of these flask-shaped plasma membrane invaginations. The generation of mice deficient in the various caveolin genes (cav-1, cav-2 and cav-3) has provided physiological models to unravel the role of caveolins or caveolae at the whole organism level. Remarkably, despite the essential role of caveolins in caveolae biogenesis, all knockout mice are viable and fertile. However, lack of caveolae or caveolins leads to a wide range of phenotypes including muscle, pulmonary or lipid disorders, suggesting their implication in many cellular processes. The aim of this review is to give a broad overview of the phenotypes described for the caveolin-deficient mice and to link them to the numerous functions so far assigned to caveolins/caveolae.


Gerhard Liebisch, S. Le Lay, Alfred Böttcher, A.-S. Lintner, Teymuras V. Kurzchalia, Kai Simons, Gerd Schmitz
Disturbed cellular lipid efflux and HDLmaturation in caveolin-1 deficient mice
FEBS J, 272(Supplement 1) 238-239 (2005)


Agathi Papanikolaou, Alexandra Papafotika, Carol Murphy, Thomais Papamarcaki, Orestes Tsolas, Marek Drab, Teymuras V. Kurzchalia, Michael Kasper, Savvas Christoforidis
Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39.
J Biol Chem, 280(28) 26406-26414 (2005)
PDF DOI
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.


Eugeni V. Entchev, Teymuras V. Kurzchalia
Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans.
Semin Cell Dev Biol, 16(2) 175-182 (2005)
PDF DOI
The nematode Caenorhabditis elegans represents an excellent model for studying many aspects of sterol function on the level of a whole organism. Recent studies show that especially two processes in the life cycle of the worm, dauer larva formation and molting, depend on sterols. In both cases, cholesterol or its derivatives seem to act as hormones rather than being structural components of the membrane. Investigations on C. elegans could provide information on the etiology of human diseases that display defects in the transport or metabolism of sterols.


Kirsten Bacia, Petra Schwille, Teymuras V. Kurzchalia
Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes.
Proc Natl Acad Sci U.S.A., 102(9) 3272-3277 (2005)
PDF DOI
The existence of lipid rafts in biological membranes in vivo is still debated. In contrast, the formation of domains in model systems has been well documented. In giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol, a clear separation of liquid-disordered and sphingomyelin-enriched, liquid-ordered phases could be observed. This phase separation can lead to the fission of the liquid-ordered phase from the vesicle. Here we show that in cholesterol-containing GUVs, the phase separation can involve dynamic redistribution of lipids from one phase into another as a result of a cross-linking perturbation. We found that the molecular structure of a sterol used for the preparation of GUVs determines (i) its ability to induce phase separation and (ii) the curvature (positive or negative) of the formed liquid-ordered phase. As a consequence, the latter can pinch off to the outside or inside of the vesicle. Remarkably, some mixtures of sterols induce liquid-ordered domains exhibiting both positive and negative curvature, which can lead to a new type of budding behavior in GUVs. Our findings could have implications for the role of sterols in various cell-biological processes such as budding of secretory vesicles, endocytosis, or formation of multivesicular bodies.


Eva-Maria Damm, Lucas Pelkmans, Jürgen Kartenbeck, Anna Mezzacasa, Teymuras V. Kurzchalia, Ari Helenius
Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae.
J Cell Biol, 168(3) 477-488 (2005)
PDF DOI
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)-deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1-independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1.


Matthew Kirkham, Akikazu Fujita, Rahul Chadda, Susan J. Nixon, Teymuras V. Kurzchalia, Deepak K Sharma, Richard E Pagano, John F. Hancock, Satyajit Mayor, Robert G. Parton
Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles.
J Cell Biol, 168(3) 465-476 (2005)
PDF DOI
Using quantitative light microscopy and a modified immunoelectron microscopic technique, we have characterized the entry pathway of the cholera toxin binding subunit (CTB) in primary embryonic fibroblasts. CTB trafficking to the Golgi complex was identical in caveolin-1null (Cav1-/-) mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs. CTB entry in the Cav1-/- MEFs was predominantly clathrin and dynamin independent but relatively cholesterol dependent. Immunoelectron microscopy was used to quantify budded and surface-connected caveolae and to identify noncaveolar endocytic vehicles. In WT MEFs, a small fraction of the total Cav1-positive structures were shown to bud from the plasma membrane (2% per minute), and budding increased upon okadaic acid or lactosyl ceramide treatment. However, the major carriers involved in initial entry of CTB were identified as uncoated tubular or ring-shaped structures. These carriers contained GPI-anchored proteins and fluid phase markers and represented the major vehicles mediating CTB uptake in both WT and caveolae-null cells.
2004
Vitali Matyash*, Eugeni V. Entchev*, Fanny Mende, Michaela Wilsch-Bräuninger, Christoph Thiele, Arndt W Schmidt, Hans-Joachim Knölker, Samuel Ward, Teymuras V. Kurzchalia
Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16.
PLoS Biol, 2(10) 280-280 (2004)
Open Access PDF DOI
Upon starvation or overcrowding, Caenorhabditis elegans interrupts its reproductive cycle and forms a specialised larva called dauer (enduring). This process is regulated by TGF-beta and insulin-signalling pathways and is connected with the control of life span through the insulin pathway components DAF-2 and DAF-16. We found that replacing cholesterol with its methylated metabolite lophenol induced worms to form dauer larvae in the presence of food and low population density. Our data indicate that methylated sterols do not actively induce the dauer formation but rather that the reproductive growth requires a cholesterol-derived hormone that cannot be produced from methylated sterols. Using the effect of lophenol on growth, we have partially purified activity, named gamravali, which promotes the reproduction. In addition, the effect of lophenol allowed us to determine the role of sterols during dauer larva formation and longevity. In the absence of gamravali, the nuclear hormone receptor DAF-12 is activated and thereby initiates the dauer formation program. Active DAF-12 triggers in neurons the nuclear import of DAF-16, a forkhead domain transcription factor that contributes to dauer differentiation. This hormonal control of DAF-16 activation is, however, independent of insulin signalling and has no influence on life span.
2003
Teymuras V. Kurzchalia, Samuel Ward
Why do worms need cholesterol?
Nat Cell Biol, 5(8) 684-688 (2003)
PDF DOI
Cholesterol is a structural component of animal membranes that influences fluidity, permeability and formation of lipid microdomains. It is also a precursor to signalling molecules, including mammalian steroid hormones and insect ecdysones. The nematode Caenorhabditis elegans requires too little cholesterol for it to have a major role in membrane structure. Instead, its most probable signalling functions are to control molting and induce a specialized non-feeding larval stage, although no cholesterol-derived signalling molecule has yet been identified for these or any other functions.


H Lucius, Tim Friedrichson, Teymuras V. Kurzchalia, G R Lewin
Identification of caveolae-like structures on the surface of intact cells using scanning force microscopy.
J Membr Biol, 194(2) 97-108 (2003)
PDF DOI
Caveolae are small, functionally important membrane invaginations found on the surface of many different cell types. Using electron microscopy, caveolae can be unequivocally identified in cell membranes by virtue of their size and the presence of caveolin/VIP22 proteins in the caveolar coat. In this study we have applied for the first time scanning force microscopy (SFM), to visualize caveolae on the surface of living and fixed cells. By scanning the membranes of Chinese hamster ovary cells (CHO), using the tapping mode of the SFM in fluid, we could visualize small membrane pits on the cell membranes of living and fixed cells. Two populations of pits with mean diameters of around 100 nm and 200 nm were present. In addition, the location of many pits visualized with the SFM was coincident with membrane spots fluorescently labeled with a green fluorescent protein-caveolin-1 fusion protein. Scanning force microscopy on cells treated with methyl-beta-cyclodextrin, an agent that sequesters cholesterol and disrupts caveolae, abolished pits with a measured diameter of 100 nm but left pits of around 200 nm diameter intact. Thus, the smallest membrane pits measured with the SFM in CHO cells were indeed very likely to be identical to caveolae. These experiments show for the first time that SFM can be used to visualize caveolae in intact cells.


Teymuras V. Kurzchalia
Anthrax toxin rafts into cells.
J Cell Biol, 160(3) 295-296 (2003)
PDF DOI
Anthrax toxin binds to a plasma membrane receptor and after endocytosis exerts its deadly effects on the cell. Until now, however, the mechanism of initial toxin uptake was unknown. In this issue, Abrami et al. (2003) demonstrate that toxin oligomerization clusters the anthrax receptor into lipid rafts and this complex is internalized via the clathrin-dependent pathway.


Bruce D. Wyse, Ian A. Prior, Hongwei Qian, Isabel C. Morrow, Susan J. Nixon, Cornelia Muncke, Teymuras V. Kurzchalia, Walter G. Thomas, Robert G. Parton, John F. Hancock
Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane
J Biol Chem, 278(26) 23738-23746 (2003)
PDF
The mechanisms involved in angiotensin II type 1 receptor (AT1-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT1-R is not concentrated in caveolae but is clustered in cholesterolindependent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT1-R in caveolae, AT1-R aveolin complexes are readily detectable e cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT1-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT1-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT1-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT1-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT1-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT1-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT1-R through the exocytic pathway, but this does not result in AT1-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT1-R.
2001
Marek Drab, Paul Verkade, Marlies Elger, Michael Kasper, Matthias Lohn, Birgit Lauterbach, Jan Menne, Carsten Lindschau, Fanny Mende, Friedrich C. Luft, Aandreas Schedl, Hermann Haller, Teymuras V. Kurzchalia
Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice.
Science, 293(5539) 2449-2452 (2001)
PDF DOI
Caveolae are plasma membrane invaginations that may play an important role in numerous cellular processes including transport, signaling, and tumor suppression. By targeted disruption of caveolin-1, the main protein component of caveolae, we generated mice that lacked caveolae. The absence of this organelle impaired nitric oxide and calcium signaling in the cardiovascular system, causing aberrations in endothelium-dependent relaxation, contractility, and maintenance of myogenic tone. In addition, the lungs of knockout animals displayed thickening of alveolar septa caused by uncontrolled endothelial cell proliferation and fibrosis, resulting in severe physical limitations in caveolin-1-disrupted mice. Thus, caveolin-1 and caveolae play a fundamental role in organizing multiple signaling pathways in the cell.


Vitali Matyash*, Christian Geier*, Annemarie Henske, Sushmita Mukherjee, David Hirsh, Christoph Thiele, Barth Grant, Frederick R. Maxfield, Teymuras V. Kurzchalia
Distribution and transport of cholesterol in Caenorhabditis elegans.
Mol Biol Cell, 12(6) 1725-1736 (2001)
PDF
Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1-L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.
1999
Mikael Simons*, Tim Friedrichson*, Jörg B Schulz, Marina Pitto, Massimo Masserini, Teymuras V. Kurzchalia
Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells.
Mol Biol Cell, 10(10) 3187-3196 (1999)
PDF
Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid-cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4 degrees C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid-cholesterol microdomains in living cells.


Teymuras V. Kurzchalia, Robert G. Parton
Membrane microdomains and caveolae.
Curr Opin Cell Biol, 11(4) 424-431 (1999)
PDF
Glycosphingolipid- and cholesterol-enriched microdomains, or rafts, within the plasma membrane of eukaryotic cells have been implicated in many important cellular processes, such as polarized sorting of apical membrane proteins in epithelial cells and signal transduction. Until recently, however, the existence of such domains remained controversial. The past year has brought compelling evidence that microdomains indeed exist in living cells. In addition, several recent papers have suggested that caveolae, which are considered to be a specific form of raft, and caveolins, the major membrane proteins of caveolae, are involved in the dynamic cholesterol-dependent regulation of specific signal transduction pathways.


Jochen Scheel, Jagan Srinivasan, Ulrike Honnert, Annemarie Henske, Teymuras V. Kurzchalia
Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans.
Nat Cell Biol, 1(2) 127-129 (1999)
PDF DOI